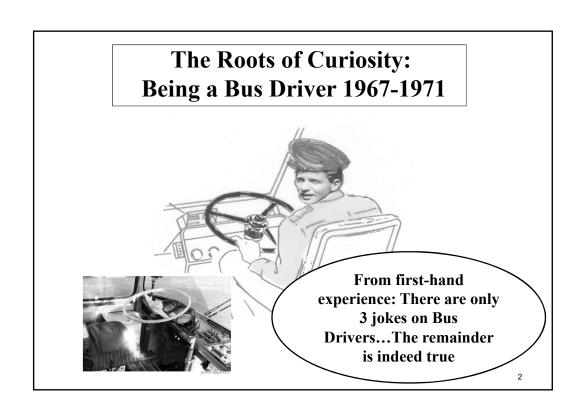
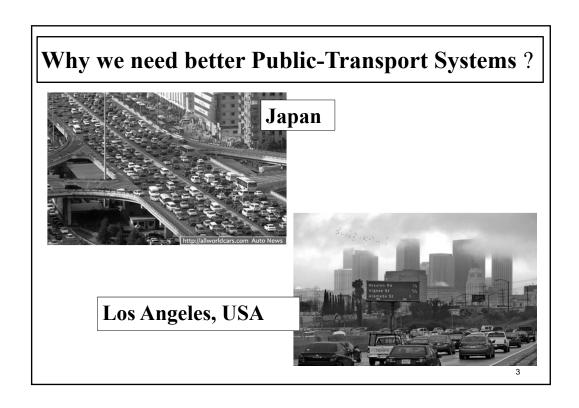
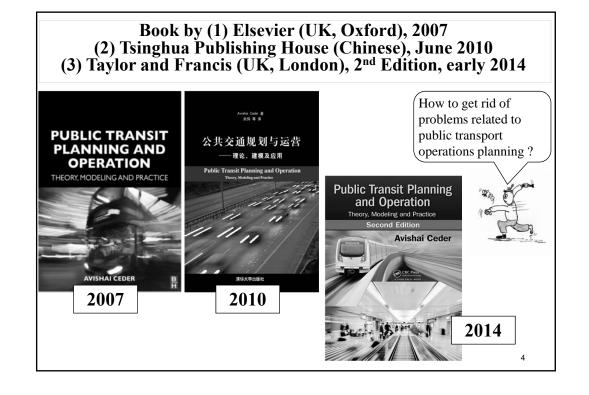
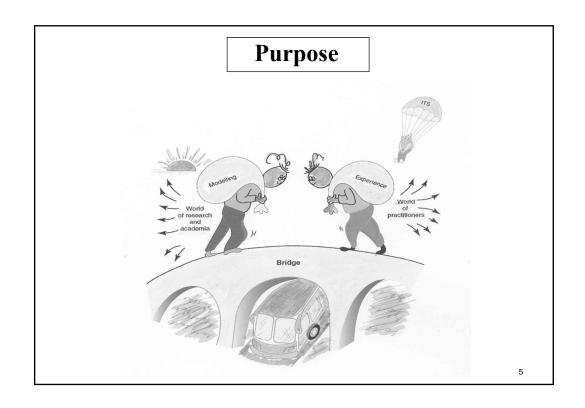
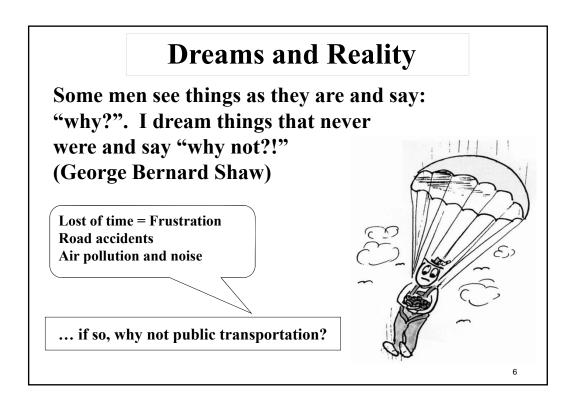
Tutorial: Scheduled Service Management


The 20th ISTTT at Noordwijk, The Netherlands July 16, 2013

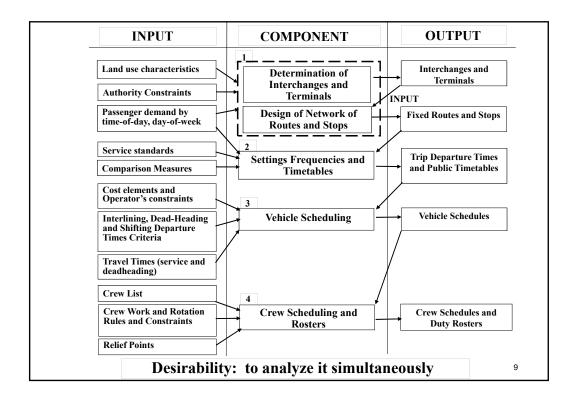

Outline:


- 1. Overview Planning Elements
- 2. Motivation
- 3. Frequency Determination
- 4. Optional Timetables
- 5. Vehicle Scheduling
- 6. Exercise




Avishai (Avi) Ceder Email: a.ceder@auckland.ac.nz

Public Transport Planning



- A. <u>Long Range</u> (> 3 Years) Major Capital Investment Major Institutional Changes
- B. Medium Range (1 3 Years)
 Bus Network Structure
 Network Size
 Fleet Size
 Fare Policy
- C. Short Range (< 1 Year)
 Route Structure
 Service Frequency
 Vehicle and Crew Scheduling
- D. <u>Control</u> (Real Time) Revise Route of Specific Vehicle Revise Schedule of Specific Vehicle

7

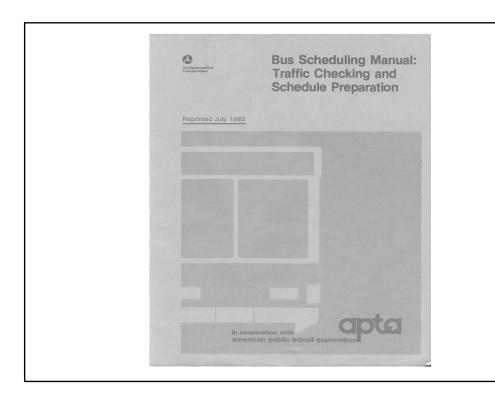
Illusion – where is the baby (new born ideas)?

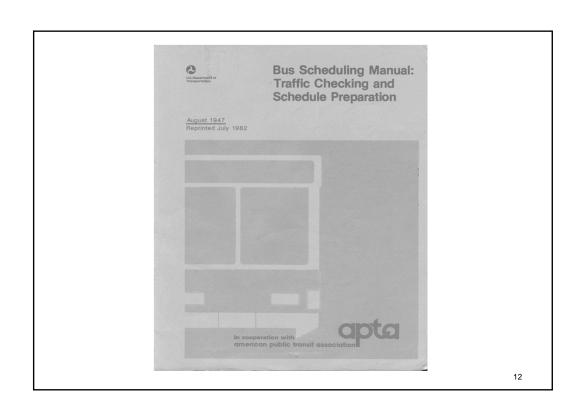
Four Phases of the Transit Operations Planning Process

Phase 1: Network Route Design

 Aim is to satisfy the demand (varies by hour, day, week, season, year) which reflects – business, industrial, cultural, educational, social, and recreational needs

Phase 2: Setting Timetables


- For each route to meet variation in the demand
- To perform coordination between routes
 - To comply with frequency constraints

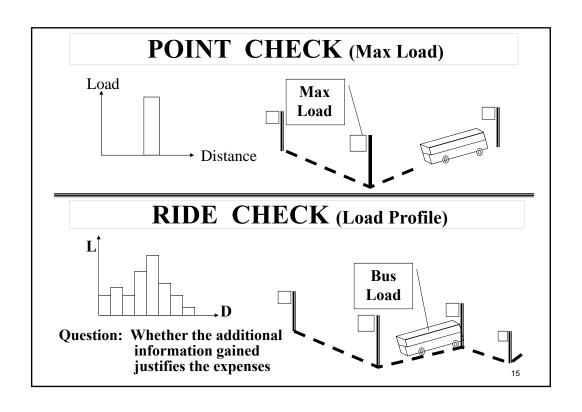

Phase 3: Scheduling Vehicles to Trips

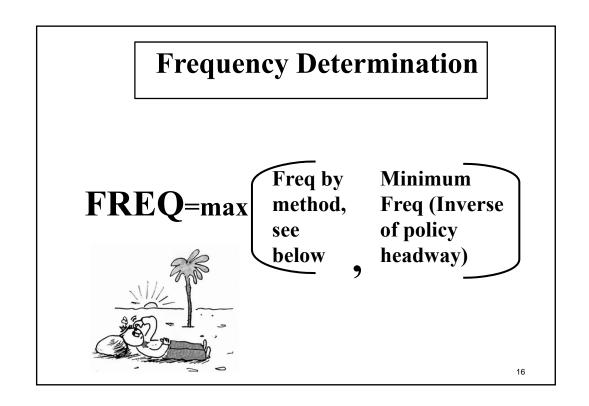
- To list all daily chains of trips (some dead-heading) for a vehicle
- To consider appropriate trip time
- To fulfill the timetable requirements
- To satisfy operational requirements (refueling, maintenance, etc.)

Phase 4: Assignment of Drivers

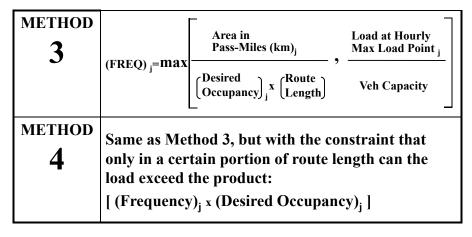
- To comply with union and operational constraints (rest period, preferences, shift splitting, shift length, etc.)
- To deal with problems resulting from various pay scales, and human satisfaction needs

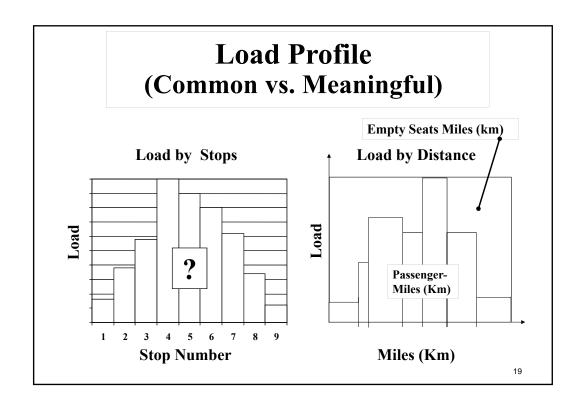
Seek for better understanding between modelers and operators Goethe saying: "Everyone hears (and see) only what he understands"

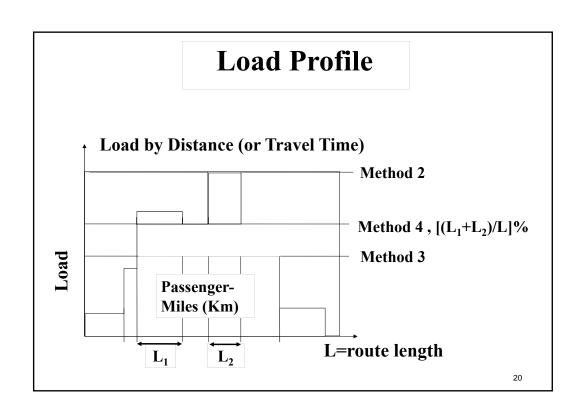

Objectives for Frequency Setting


- (1) Setting of vehicle frequencies to:
 - Maintain Adequate Service quality.
 - Minimize the Number of Vehicles in the Schedule

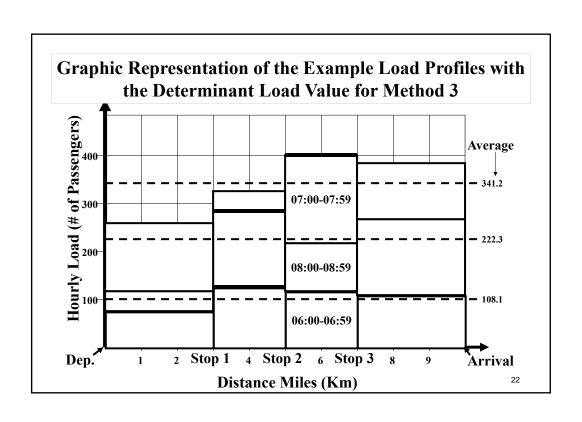
(2) Allocating Efficiently the Cost to Gather Passenger Load Data




Two Point Check Methods (for period j)


METHOD 1	(FREQ) _j = (Load at Daily Max Load Point) _j (Desired Occupancy) _j
METHOD 2	(FREQ) (Load at Hourly Max Load Point) j (Desired Occupancy) j

.,


Two Ride Check Methods (for period j)

Distance (km) between stops	Stop Name	Loads in 6 -7 am	each time 7 - 8	Period 8 - 9	Total Load
0	Departure Terminal	77	261	118	456
3	Stop 1	132	323	294	749
2	Stop 2	119	411	231	761
2	Stop 3	116	387	273	776
3	Arrival Terminal				
Number of observe	ed Scheduled Buses	2	6	4	1
Desired Occupanc	y (Load Factor or Load standard)	50	65	65	
Policy Headway (n	ninutes)	30	30	30	j
Single mean round around times (min	l trip time, including layover and turn utes)	55	67	55	Calculated
Bus Capacity (Nur standees)	nber of seats +max allowable				
Area under the loa	nd profile (passenger-km)	1081	3412	2223	┥

Frequency and Headway Results of Example Problem

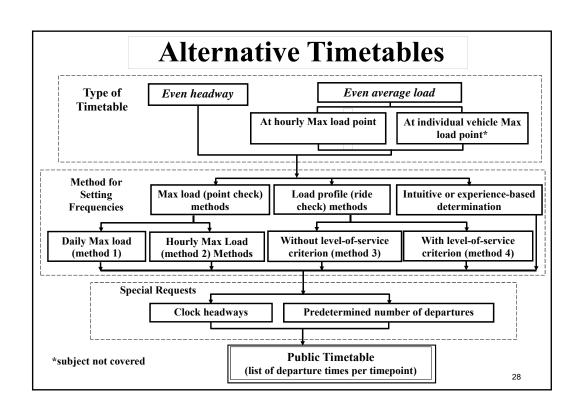
Time Interval	Metl	nod 1	Metl	nod 2	Metl	nod 3	Meth (20	nod 4 %)
	F	Н	F	Н	F	Н	F	Н
06:00-06:59	2.32	26	2.64	23	2.16	28	2.38	25
07:00-07:59	5.95	10	6.32	9	5.25	11	5.95	10
08:00-08:59	4.20	14	4.52	13	3.67	16	4.20	14

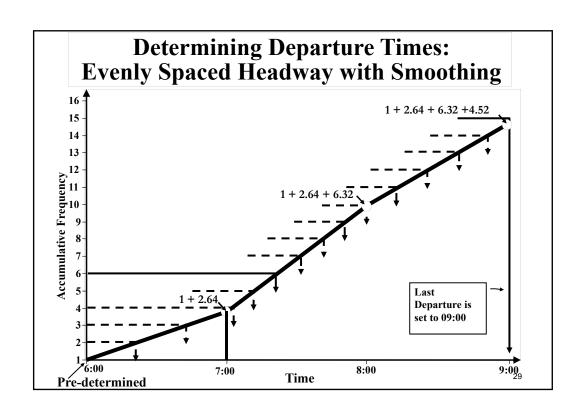
Current Practice

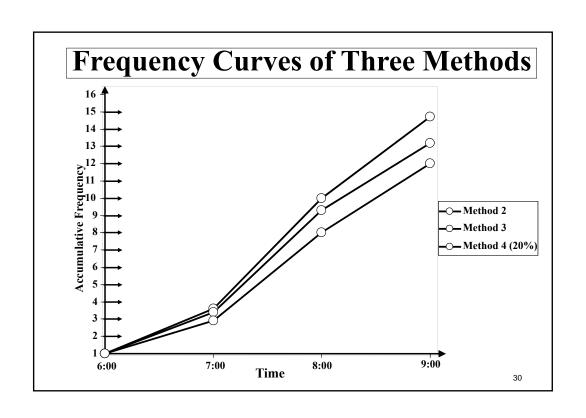
- 1. Running times are established for each route
- 2. The calculated bus speeds are examined (to correct special cases of speeding-up and slowing-down)
- 3. Headways are determined at the peak point
- 4. Initial departure times are set at the peak point
- 5. Departure times are set at all route time points
- 6. The departure times are adjusted at the peak point (to include practical elements)
- 7. The final route Timetable is completed
- 8. Updating and transfer to marketing

25

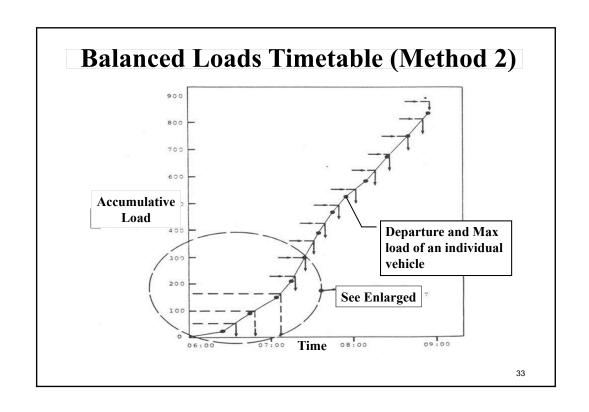
Current Practice Example:

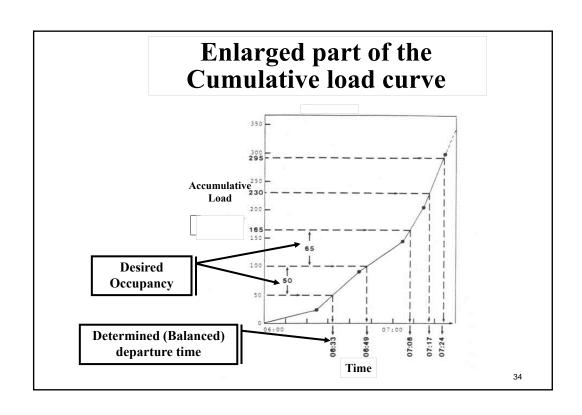

- LA Metro files include 40,000 trips. The data is collected manually and then key punched
- About 40% of the scheduler's time is devoted to data entry and proofreading generated reports

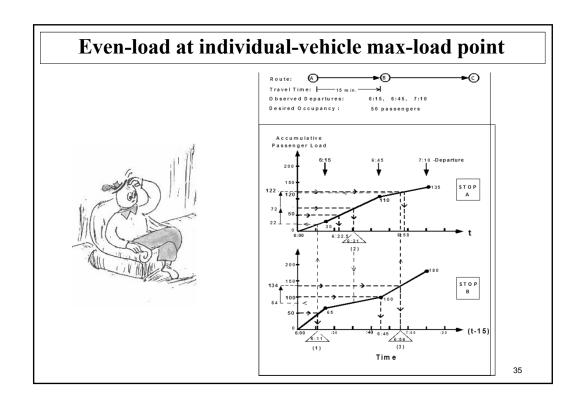


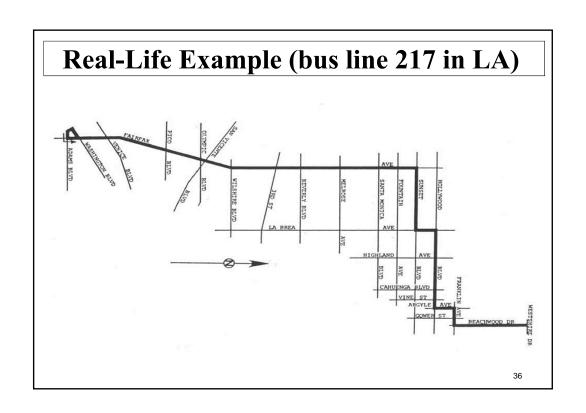

Objectives

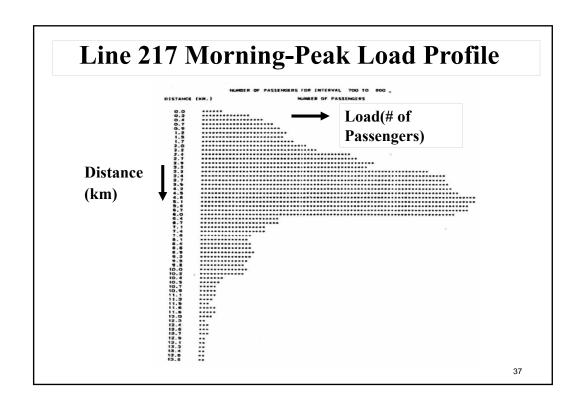
- Evaluate alternative timetables in terms of required resources
- Improve the correspondence of vehicle departure time with passenger demand while minimizing resources
- Improve timetables for synchronization
- To permit in timetable construction procedure, direct bus frequency changes for possible exceptions (known to the scheduler) which do not rely on passenger demand data
- To allow the construction of timetables with headway smoothing techniques (similar to that performed manually) in the transition segments between adjacent time periods
- Integrate different headway setting and different timetables construction methods

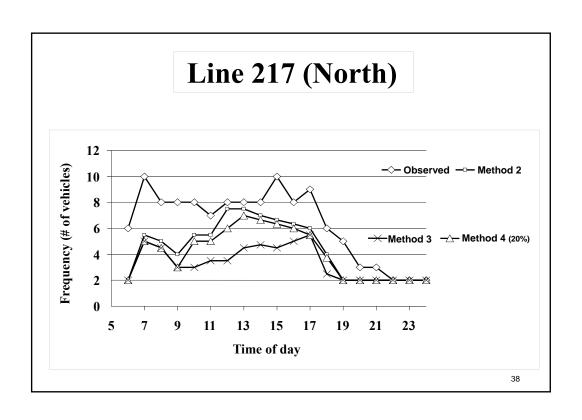


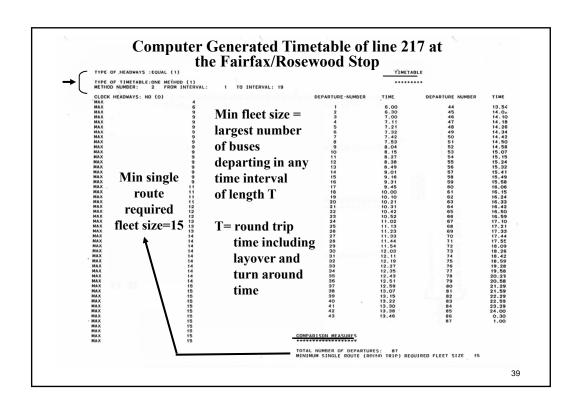

have a choice?

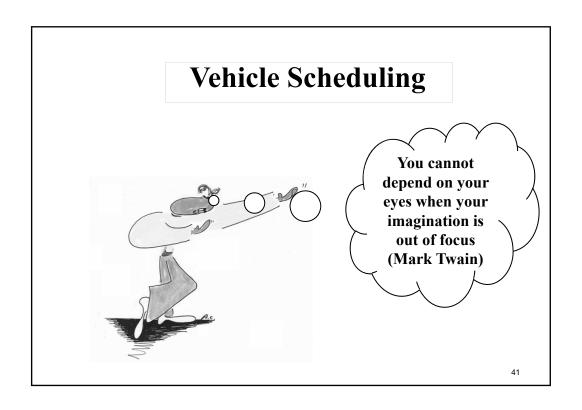

Japan's Subway in peak hours


COMPLEMENTRY DATA (Example Problem)


Time Period	Departure Time	Headway	# of Passengers Method 1	# of Passengers Method 2	Load Profile Passenger-Km (divided by length) Methods 3&4
	06:00*	0			
06:00-06:59	06:25	25	18	23	160 (16.0)
	06:45	20	59	67	557 (55.7)
	07:05	20	52	56	484 (48.4)
	07:15	10	58	63	542 (54.2)
07.00.07.50	07:25	10	84	90	669 (66.9)
07:00-07:59	07:35	10	89	91	751 (75.1)
	07:45	10	65	78	634 (63.4)
	07:55	10	60	55	520 (52)
	08:10	15	54	60	525 (52.5)
00 00 00 50	08:25	15	84	89	727 (72.7)
08:00-08:59	08:40	15	87	81	636 (63.6)
	08:55	15	60	84	510 (51)

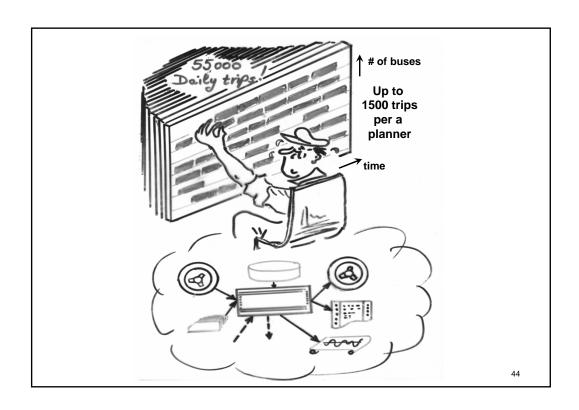


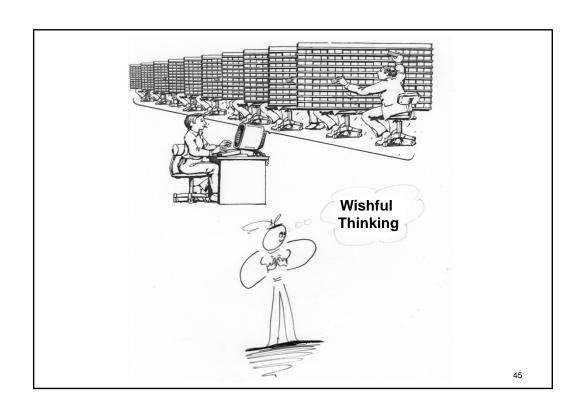




			acro	ss all	Stor	S			
TH15 ****	*** 15 8450	0 04 THE FOL							
TYPE OF .	-	ALAMCED (2)							
TYPE OF 1	INCTABLE : OH	FROM INTER	VAL: 1	-					
-	CWAT - W (
			EETABLE	<u> </u>					
DCP NA	# 1 ACH-00	FRANKLIN	HOLLYWOO YINE	LA BREA	STA MONI	BEYERLY	PAIRFAX	ADAMS WASHINGT	
1 ;	2:77	2:12	2:44	5.50	2:34	6.00	6.05 6.44	6.11	
1	6.22 6.48 7.02	6.38	6.41	7.03	7.10	7.00	7.06	7.12	
	7.14	7.08 7.19 7.28	7.22	7.29	7.37	7.42	7.26 7.48 7.57	7.55	
:	7.33 7.44 7.56	7.38	7.41	7.49	7.58 8.09 8.21	8.03	8.09 8.20 8.32	8.17 8.28 8.40	
11	8.0A 8 23	8.01 8.12 8.28	8.16	1.24 1.24	8.00	8.53	8.32	9.07	
1 12	8.57 8.48 3.59	8.42 9.04	8.56	9.04 9.15 9.27	9.02	9.07	9.13 9.24 9.35	9.21 9.22 9.42	
17	9.11	9.16	9.19	9.28	9.26	9.41	9.47	10.06	
19 20 21 22 23 24	9.30	9.35 9.45 9.53	9.38 9.48 9.56	9.46 9.56 10.04	10.05	10.00	10.07	10.15 10.26 10.33	
1 1	10.09	10.05	10.08	10.25	10.25	10.31 10.40 10.52	10.37 10.46 10.59	10.46 10.55 11.07	
1 11	10.30	10.35	10.38	10.46	11.06	11.01	11.08	11.17	
26 27 28	11.04	10.57	11.12	11.08 11.20 11.32	11:27	11.23	11.30	11.39	
29 30 31 32 33	11 27	11.42	11.46	11.42	12.03	12.09	12.05 12.16 12.33	12.14 12.27 12.44	
22	12.04	12.09	12.12	12.20	12.29	12.35	12.42	12.53	
24 25 36 37	12.27 12.27 12.44	12.22 12.42 12.49	12.46	12.54	13.03	12.58 13.09 13.16	13.05	13.16	
27 21 29	12.57	12.57 13.05 13.23	13.00 13.08 13.26	13.08 13.16 13.34	13.17 13.25 13.43	13.23	13.30 13.38 13.56	13.39 13.47 14.05	
40	12.29 12.35 13.42	13.34	13.37	13.47	14.03	14.03	14.11	14.20	
:	13 42	13.47	13.50 13.58 14.10	14.00 14.08 14.20	14.10	14.16	14.24	14.33	
:	14 14	14.19	14.22	14.52	14.42	13.00	14.54	15.05	
45 46 47 48 49 50 51	14.30	14.23	14.28	14.54	15.04	15.04	15.12	15.21 15.27 18.35	
50	14.55 15.06 15.14	15.00	15.03	15.13	15.23	15.29	15.27	15.46	
55	15.25	19.30	15.33	18.42	16.53	15.59	16.07	16.16	
55 54 55 56 57 58	16.15	16.00	16.03	16.13	16.43	16.29	16.57	16.46 17.06 17.26	
54	16.55	17.00	17.03	17.13	17.22	17.29	17.37	17.46	
59 60 61 62 63	17.52	17.56	17.59	18.07	18.17	18.22	19.01	19.10	
62	19.25	19.34	20.03	20.11	19.52	19.21 19.58 20.23	20.04	20.12	
	20 24 21 05 21.30	20.22	21.13	20.44 21.21 21.46	21.28	20.56 21.33 21.58	21.02 21.39 22.04	21.47 21.47 22.12	
:	21.57	22.02	21 38 22.05 22.40	22.13	22.20	22.25	22.01 23.06 23.26	22.30	
71	22.52 23.31 0.52	23.57 23.36 0.57	23 00 23.39 0.00	23.08 23.47 0.08	23.15 23.54 0.15	23.20 23.59 0.20	0.05	0.13 0.24	
1 79	0.30	0.35	0.28	0.46	0.50	0.50	1.04	1 1.12	

STUDY MOTIVATION

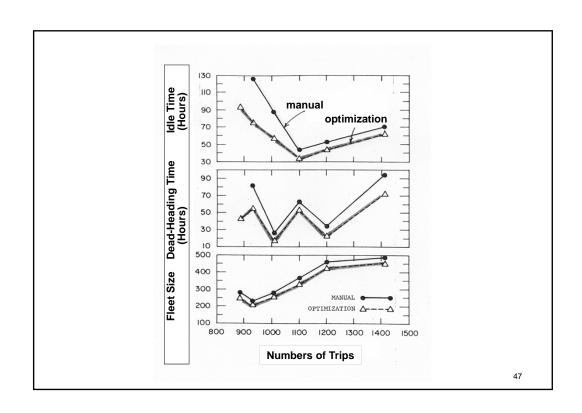

EGGED: The Israel National Bus Carrier (4000 Buses)


DAN: Tel Aviv Carrier (1400 Buses) activities on a DAILY basis (EGGED):

Type	No. of trips	No. of veh-km		
Service	36,000	775,000		
Dead heading	14,500	91,000		
Special routine	4,000	92,000		
Special others	500	70,000		
Total	55,000	1,028,000		

Average daily passengers:

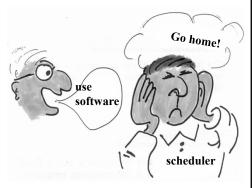
2,440,000 (1,600,000 + 840,000) EGGED DAN



Developing Optimal and Fully Computerized Algorithm

Fully computerized algorithm:

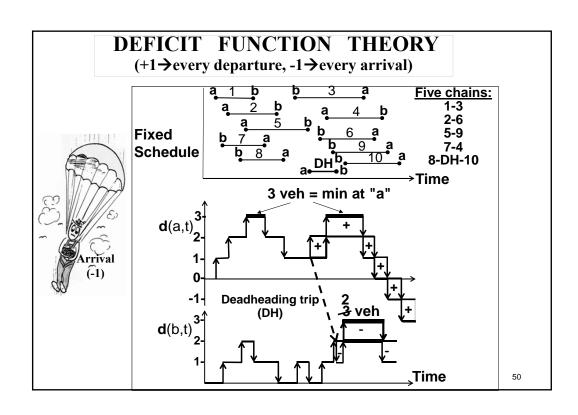
- (a) Chaining bus trips in a sequential order: Depots→bus routes alternating with idle time and dead-heading trips →depots (formulated as a one-zero integer programming problem and is converted to a large-scale assignment problem)
- (b) Assigning buses from depots to the bus schedules generated in (a) (formulated as a "transportation problem")



Major limitations

Cannot consider:

- (1) the integration of more than 2500 trips.
- (2) the need for bus refueling.
- (3) the need for driver's meals.
- (4) availability of adequate bus type for each trip.
- (5) some drivers' constraints.
- (6) different scheduling policies for each group of lines.



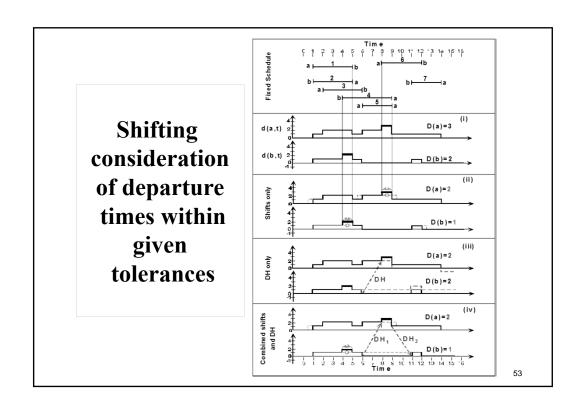
The total number of trip departures at k less the total number of arrivals at k-up to and including time t

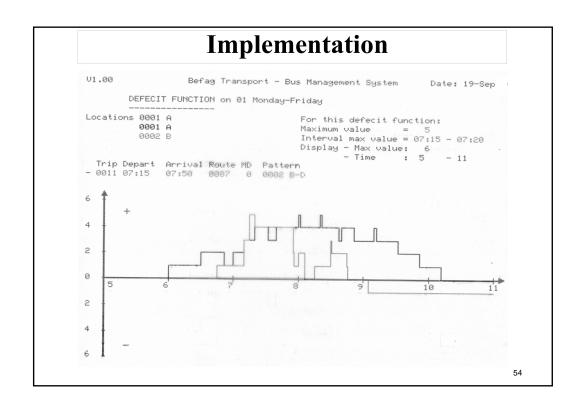
The fleet size Theorem

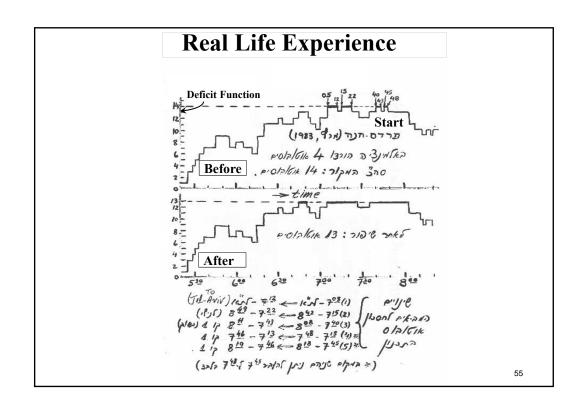
For a given set of terminals T and a fixed schedule of trips S, the minimum number of vehicles required to service all trips in S is:

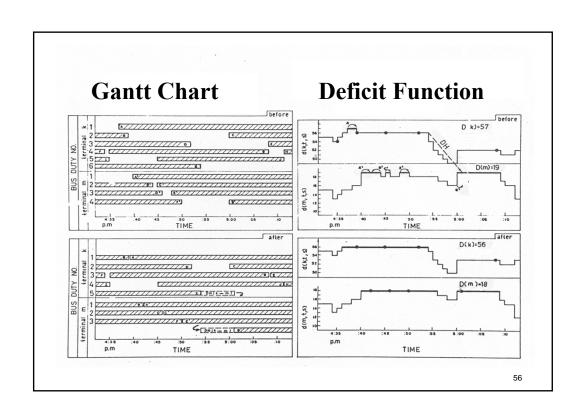
$$N(s) = \sum_{k \in T} D(k) = \sum_{k} \max d(k, t)$$

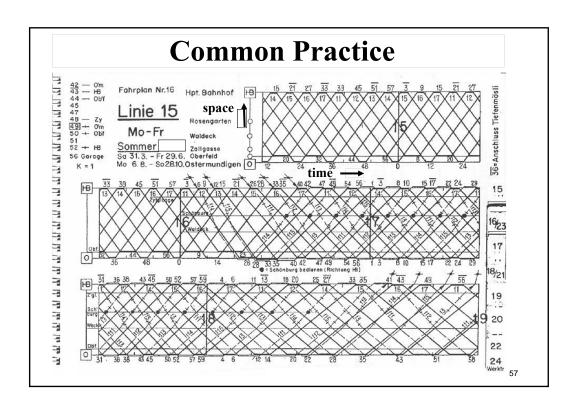
Lower Bound

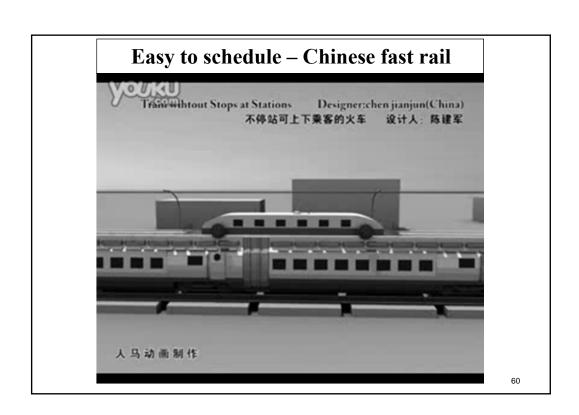

- When no reduction in the number of vehicles can be further made (in the algorithm)
- How much the transit management can expect to reduce the fleet size?

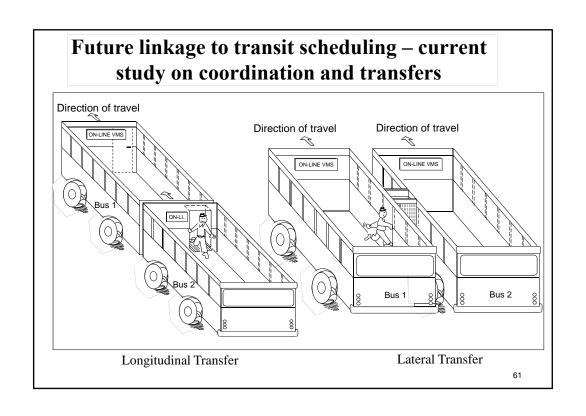

51

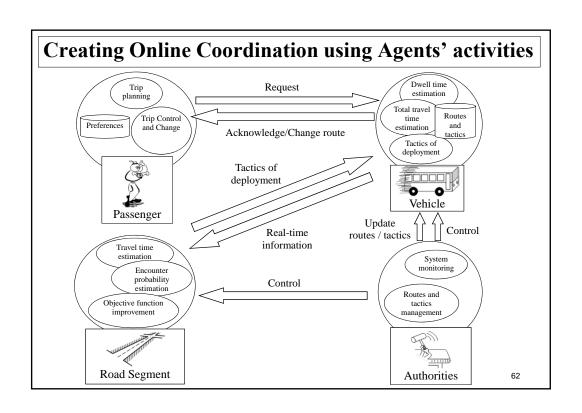

Constructing Lower Bound on the Fleet Size

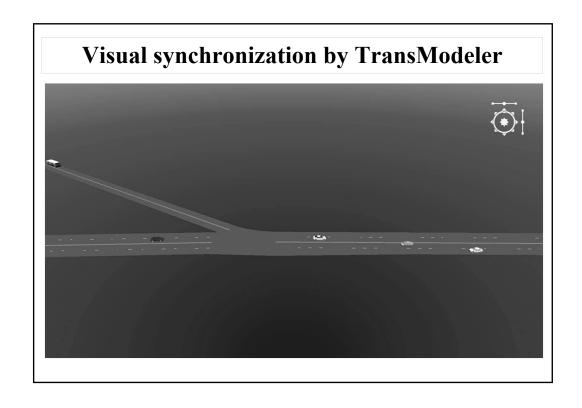

$$G(S) = \max g(t, S), t \in [T_1, T_2],$$
where
$$g(t, S) = \sum_{k \in T} d(k, t, S)$$

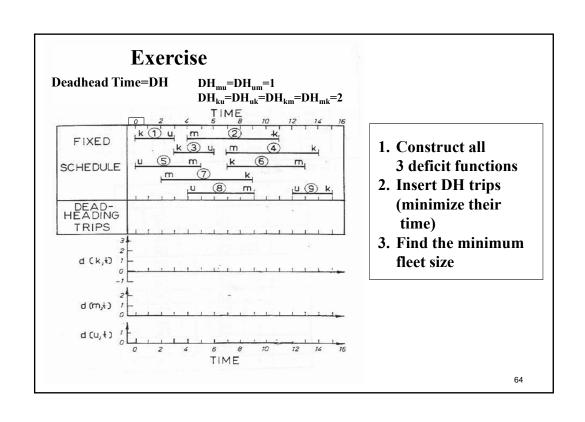

G(S) describes, at each point of time, the No of vehicles simultaneously in operation (service)


Applications


- 1. Design of new transit network or redesign an existing one
- 2. Design of efficient short-turns
- 3. Design of operational transit parking spaces
- 4. Vehicle scheduling with different vehicles types
- 5. Crew scheduling




Not all buses are treated same



Tutorial: Scheduled Service Management

The 20th ISTTT at Noordwijk, The Netherlands July 16, 2013

End of Presentation

Thank-you!

Avishai (Avi) Ceder Email: a.ceder@auckland.ac.nz